Sur cette page, vous pouvez obtenir une analyse détaillée d'un mot ou d'une phrase, réalisée à l'aide de la meilleure technologie d'intelligence artificielle à ce jour:
Почти периодическая функция — это функция на множестве вещественных чисел, которая периодична с любой желаемой точностью, если заданы достаточно большие равномерно распределённые «почти периоды». Концепцию первым изучал Харальд Бор и её впоследствии обобщили, среди прочих, Вячеслав Васильевич Степанов, Герман Вейль и Абрам Самойлович Безикович. Есть также понятие почти периодических функций на локально компактных абелевых группах, которое первым изучал Джон фон Нейман.
Почти периодичность является свойством динамических систем, которое проявляется при прослеживании пути системы через фазовое пространство. Примером может служить планетная система с планетами на орбитах, двигающихся с несопоставимыми периодами (то есть с вектором периодов, который не пропорционален вектору целых чисел). Теорема Кронекера из теории диофантовых приближений может быть использована, чтобы показать, что любая конкретная конфигурация, встретившись однажды, будет повторяться с любой указанной точностью — если мы достаточно долго ждём, мы можем наблюдать, что все планеты вернутся в секунды дуги, в которых они находились.